首页 > 经验 > 4g网络 > 闪存性能怎么样,被忽略的手机闪存性能 UFS和eMMC究竟有什么区别

闪存性能怎么样,被忽略的手机闪存性能 UFS和eMMC究竟有什么区别

来源:整理 时间:2024-06-01 14:32:32 编辑:本来科技 手机版

本文目录一览

1,被忽略的手机闪存性能 UFS和eMMC究竟有什么区别

ufs闪存读取速度600以上,2.0的600,2.1的800。emmc读取速度只有200

被忽略的手机闪存性能 UFS和eMMC究竟有什么区别

2,闪存和一般的存储设备有什么区别

闪存盘是一种采用USB接口的无需物理驱动器的微型高容量移动存储产品,它采用的存储介质为闪存(Flash Memory)。闪存盘不需要额外的驱动器,将驱动器及存储介质合二为一,只要接上电脑上的USB接口就可独立地存储读写数据。闪存盘体积很小,仅大拇指般大小,重量极轻,约为20克,特别适合随身携带。闪存盘中无任何机械式装置,抗震性能极强。另外,闪存盘还具有防潮防磁,耐高低温(-40°C ~ +70°C)等特性,安全可靠性很好。 所以 U盘属于闪存,区别的就是磁盘、硬盘等

闪存和一般的存储设备有什么区别

3,UFS与eMMC性能差距到底有多大

手机闪存eMMc和UFS这两种不同标准,所表现出的性能也是天差地别。需要注意的是,eMMc和UFS不是两种不同规格的存储芯片,它们都是在NAND存储芯片的基础上,再加上了控制芯片,接入标准接口,进行标准封装,形成一个高度集成的储存模块。二者都是面向移动端闪存的一种技术标准。eMMc最新标准已经发展到5.1。而理论最大传输速度可以达到600M/s,不过实际使用中差不多有250M/s。而最新的UFS 2.X有两个版本,其中UFS 2.0 HS-G2的理论带宽为5.8Gbps,大约740MB/s,更快速的UFS 2.1 HS-G3的理论带宽更是达到了11.6Gbps,约1.5GB/s。实际使用中可达到600M/s以上。两者之间如此大的差异是因为UFS使用高速串行接口替代了并行接口,改用了全双工方式,使收发数据可以同时进行,而eMMc则不行。说了这么多,那么到底对我们使用手机有什么影响呢?首先,最直观的就是,打开程序变快,另外多任务执行响应速度快,低延迟载入快,连续拍照写入更快,预览文件加载更快。而在提升速度的同时功耗变低了。ufs相比eMMc有如此巨大的优势,也不怪“闪存门”受害用户会有如此大的反应了,大家以后购机可要多个心眼了。数据资料来源于网络。

UFS与eMMC性能差距到底有多大

4,华为闪存存储好吗

闪存(ROM):也就是手机存储数据的地方。断电前提下仍能保存数据的储存器,是手机文件的唯一存储设备。它的大小主要是影响手机文件存储多少,读写速度可以左右加载速度快慢。目前主流的闪存规格主要有两种,一种由MMC制定的存储规格,简称为eMMC;另外一种是UFS,是一种基于UNIX文件系统的简称。好,当然好
闪存对于帮助企业应对数据爆炸式增长,加速关键业务应用至关重要。根据专业报告公司Gartner的预测,闪存存储将在两年内大规模替换传统磁盘存储,成为数据中心的主流存储介质,并应用于企业的关键重载业务。华为从2002年就已经开始存储技术的研究,研发能力遍及全球,比如在美国硅谷建立技术的桥头堡,在俄罗斯建立存储算法研究中心,在中国成都、深圳、北京等地构筑交付能力中心,不断增强创新能力和核心竞争力,华为全闪存存储实现了行业最高的性能和可靠性。
华为虽然闹了内存门,但是华为官方从来没说闪存只采用ufs2.1,而且也没说新机会修改为ufs2.1闪存。所以,谁也不确定华为准备怎么办。而且p10市场上存货多的很,ufs2.1 emmc 闪存都有,淘宝奸商扯淡的很,ufs2.1闪存机型贵了好几百

5,华为全闪存性能怎么样

2018一2019全闪存阵队购买指南,被DCG评为最佳推荐。
基于全面闪存化、全面云化以及全面智能化的华为存储不仅能为运营商关键业务带来巨大的改变,相信在不同行业领域都能够帮助企业实现业务提升,提升企业竞争力。
华为全闪存存储是业界第一,性能强,稳定性更好,自2011年起一直保持“零事故”,在全球标准性能测试组织SPC和SPEC的评测中,华为更是将打破自己保持的性能纪录作为常态要求,在SPC-1最新发布的全球前10名的存储性能产品名单中,华为存储占据了7位。
(⊙o⊙)哇,还有这么低的,你的不是p10吧
分析如下:1、缓存垃圾过多平时在使用软件的过程中,会产生一些垃圾文件,如果长时间不清理会导致设备越来越卡,也会出现闪退状况。2、运行程序过多如果不进行设置,很多软件都会自己运行,而手机后台程序过多会造成内存不足,从而造成应用闪退。3、杀毒软件部分软件存在着恶意代码,会被杀毒软件拦截或者由于安全软件误将前台软件当做后台软件清理所致4、应用版本问题如果应用的版本较低或处于测试阶段导致应用软件与设备不兼容造成闪退5、网速问题部分软件需要一个稳定的网络,当网络出现卡顿时应用随之出现卡顿甚至闪退现象6、缺少数据包一些大型游戏需要数据包才能运行。所以要先安装好数据包才能使用。7、系统不兼容部分软件对版本有一定的要求,如果系统版本过低,软件是不能支持的,所以会闪退。8、分辨率不兼容一些软件对手机分辨率有一定的要求,如果手机分辨率不兼容,有部分软件就容易出现闪退或其它错误。9、系统进程被卸载、停用或丢失部分软件依赖于系统进程的支持从而能够正常运行,当系统进程丢失时可能会导致绝大部分应用闪退。10、系统存储空间严重不足部分应用需要不停的读写数据从而占用系统存储空间,当系统空间严重不足可能会出现卡顿、闪退甚至是死机的现象
华为不做闪存。

6,试述闪存的特点

U盘就是闪存盘 闪存盘是一种采用USB接口的无需物理驱动器的微型高容量移动存储产品,它采用的存储介质为闪存(Flash Memory)。闪存盘不需要额外的驱动器,将驱动器及存储介质合二为一,只要接上电脑上的USB接口就可独立地存储读写数据。闪存盘体积很小,仅大拇指般大小,重量极轻,约为20克,特别适合随身携带。闪存盘中无任何机械式装置,抗震性能极强。另外,闪存盘还具有防潮防磁,耐高低温(-40°C ~ +70°C)等特性,安全可靠性很好。 闪存盘只支持USB接口,它可直接插入电脑的USB接口或通过一个USB转接电缆(具有 A-Type Plug and A-Type Receptacle)与电脑连接。 闪存盘主要有两方面的用途: 第一,可用来在没有连网的电脑之间交流大于1.44MB的文件,例如在单位与单位、单位与家庭以及个人与个人之间的电脑之间交换文件。有了闪存盘,在单位没有完成的工作可以带回家继续做,有了闪存盘,可以将大型的设计文件带到客户哪里,有了闪存盘,可将在单位从宽频网上下载的图片或MP3文件带回家中。 第二,可用来在笔记本电脑上替换掉软驱。拎着笔记本电脑经常出差的商务人士都很头痛笔记本电脑的重量,而软驱在其中占了很大份量。用闪存盘就可随时随地与客户交换文件数据,从此和软驱说再见。从而使商务之旅轻松愉快,移动办公效率倍增。 闪存盘至少可擦除1,000,000次。 闪存盘里数据至少可保存10年。 理论上一台电脑可同时接127个闪存盘,但由于驱动器盘符采用26个英文字母以及现有的驱动器需占用几个英文字母,故最多可以接23个闪存盘(除开 A、B、C)且需要USB HUB的协助 目前闪存卡、记忆卡有:CF、MMC、 SD、 MINI-SD、 RS-MMC、T-Flash、MS、MS PRO、MS Duo九种。下面我们了解一下这几种卡的规格。 CF卡 即Compact Flash,一种袖珍闪存卡(尺寸为43mm*36mm*3.3mm),存储文件的速度比较快、存储容量适中,能耗低,在中、高档数字照相机上应用比较多。CF存储卡的部分结构采用强化玻璃及金属外壳,CF存储卡采用Standard ATA/IDE接口界面,配备有专门的PCM-CIA适配器(转接卡),笔记本电脑的用户可直接在PCMCIA插槽上使用,使数据很容易在数码相机与电脑之间传递。目前最高容量可以达到8G。 MMC卡 即MultiMediaCard。由西门子公司和首推CF的SanDisk于1997年推出。1998年1月十四家公司联合成立了MMC协会(MultiMediaCard Association简称MMCA),现在已经有超过84个成员。MMC的发展目标主要是针对数码影像、音乐、手机、PDA、电子书、玩具等产品,尺寸只有32mm x 24mm x 1.4mm,只有1.5克。MMC也是把存贮单元和控制器一同做到了卡上,智能的控制器使得MMC保证兼容性和灵活性。 MMC存贮卡可以分为MMC和SPI两种工作模式,MMC模式是标准的默认模式,具有MMC的全部特性。而SPI模式则是MMC存贮卡可选的第二种模式,这个模式是MMC协议的一个子集,主要用于只需要小数量的卡(通常是1个)和低数据传输率(和MMC协议相比)的系统,这个模式可以把设计花费减到最小,但性能就不如MMC。 MMC被设计作为一种低成本的数据平台和通讯介质,它的接口设计非常简单:只有7针!接口成本低于0.5美元。在接口中,电源供应是3针,而数据操作只用3针的串行总线即可(SPI模式再加上1针用于选择芯片)。 MMC的操作电压为2.7伏到3.6伏,写/读电流只有27mA和23mA,功耗很低。它的读写模式包括流式、多块和单块。最小的数据传送是以块为单位的,缺省的块大小为512bytes。 SD卡 即Secure Digital Card卡,由松下、东芝和SanDisk联合推出,1999年8月才首次发布。于2000年2月1日发起成立了SD协会(Secure Digital Association简称SDA),成员公司已经超过90个,阵容强大,其中包括IBM,Microsoft,Motorola,NEC、Samsung等。 SD卡数据传送和物理规范由

7,闪存的到底什么作用

内存,内部存储器,主要是指RAM,CMOS也是内存一种。特点是速度快,缺点是需要电来维持,断电就会丢失所记录的信息。 外存,外部存储器,只要指各种驱动器磁盘。软盘光盘硬盘U盘等。缺点是速度慢,但可以不需要电力来维持,因此可以方便携带。软盘是早期电脑信息传播的主要途径。 闪存属于新式存储器,用来代替传统磁盘来携带传递信息,体积小容量大速度快,不需要电力来维持保存的信息。主要用于各种数码设备,数码相机MP3播放器U盘手机掌上游戏机(如PSP)等。
闪存 目前主板上的BIOS大多使用Flash Memory制造,翻译成中文就是"闪动的存储器",通常把它称作"快闪存储器",简称"闪存"。闪存盘是一种移动存储产品,可用于存储任何格式数据文件便于随身携带,是个人的“数据移动中心”。闪存盘采用闪存存储介质(Flash Memory)和通用串行总线(USB)接口,具有轻巧精致、使用方便、便于携带、容量较大、安全可靠、时尚潮流等特征,是大家理想的便携存储工具. 我们常说的闪存其实只是一个笼统的称呼,准确地说它是非易失随机访问存储器(NVRAM)的俗称,特点是断电后数据不消失,因此可以作为外部存储器使用。而所谓的内存是挥发性存储器,分为DRAM和SRAM两大类,其中常说的内存主要指DRAM,也就是我们熟悉的DDR、DDR2、SDR、EDO等等。闪存也有不同类型,其中主要分为NOR型和NAND型两大类。 闪存的分类 NOR型与NAND型闪存的区别很大,打个比方说,NOR型闪存更像内存,有独立的地址线和数据线,但价格比较贵,容量比较小;而NAND型更像硬盘,地址线和数据线是共用的I/O线,类似硬盘的所有信息都通过一条硬盘线传送一般,而且NAND型与NOR型闪存相比,成本要低一些,而容量大得多。因此,NOR型闪存比较适合频繁随机读写的场合,通常用于存储程序代码并直接在闪存内运行,手机就是使用NOR型闪存的大户,所以手机的“内存”容量通常不大;NAND型闪存主要用来存储资料,我们常用的闪存产品,如闪存盘、数码存储卡都是用NAND型闪存。 这里我们还需要端正一个概念,那就是闪存的速度其实很有限,它本身操作速度、频率就比内存低得多,而且NAND型闪存类似硬盘的操作方式效率也比内存的直接访问方式慢得多。因此,不要以为闪存盘的性能瓶颈是在接口,甚至想当然地认为闪存盘采用USB2.0接口之后会获得巨大的性能提升。 前面提到NAND型闪存的操作方式效率低,这和它的架构设计和接口设计有关,它操作起来确实挺像硬盘(其实NAND型闪存在设计之初确实考虑了与硬盘的兼容性),它的性能特点也很像硬盘:小数据块操作速度很慢,而大数据块速度就很快,这种差异远比其他存储介质大的多。这种性能特点非常值得我们留意。 NAND型闪存的技术特点 内存和NOR型闪存的基本存储单元是bit,用户可以随机访问任何一个bit的信息。而NAND型闪存的基本存储单元是页(Page)(可以看到,NAND型闪存的页就类似硬盘的扇区,硬盘的一个扇区也为512字节)。每一页的有效容量是512字节的倍数。所谓的有效容量是指用于数据存储的部分,实际上还要加上16字节的校验信息,因此我们可以在闪存厂商的技术资料当中看到“(512+16)Byte”的表示方式。目前2Gb以下容量的NAND型闪存绝大多数是(512+16)字节的页面容量,2Gb以上容量的NAND型闪存则将页容量扩大到(2048+64)字节。 NAND型闪存以块为单位进行擦除操作。闪存的写入操作必须在空白区域进行,如果目标区域已经有数据,必须先擦除后写入,因此擦除操作是闪存的基本操作。一般每个块包含32个512字节的页,容量16KB;而大容量闪存采用2KB页时,则每个块包含64个页,容量128KB。 每颗NAND型闪存的I/O接口一般是8条,每条数据线每次传输(512+16)bit信息,8条就是(512+16)×8bit,也就是前面说的512字节。但较大容量的NAND型闪存也越来越多地采用16条I/O线的设计,如三星编号K9K1G16U0A的芯片就是64M×16bit的NAND型闪存,容量1Gb,基本数据单位是(256+8)×16bit,还是512字节。 寻址时,NAND型闪存通过8条I/O接口数据线传输地址信息包,每包传送8位地址信息。由于闪存芯片容量比较大,一组8位地址只够寻址256个页,显然是不够的,因此通常一次地址传送需要分若干组,占用若干个时钟周期。NAND的地址信息包括列地址(页面中的起始操作地址)、块地址和相应的页面地址,传送时分别分组,至少需要三次,占用三个周期。随着容量的增大,地址信息会更多,需要占用更多的时钟周期传输,因此NAND型闪存的一个重要特点就是容量越大,寻址时间越长。而且,由于传送地址周期比其他存储介质长,因此NAND型闪存比其他存储介质更不适合大量的小容量读写请求。 决定NAND型闪存的因素有哪些? 1.页数量 前面已经提到,越大容量闪存的页越多、页越大,寻址时间越长。但这个时间的延长不是线性关系,而是一个一个的台阶变化的。譬如128、256Mb的芯片需要3个周期传送地址信号,512Mb、1Gb的需要4个周期,而2、4Gb的需要5个周期。 2.页容量 每一页的容量决定了一次可以传输的数据量,因此大容量的页有更好的性能。前面提到大容量闪存(4Gb)提高了页的容量,从512字节提高到2KB。页容量的提高不但易于提高容量,更可以提高传输性能。我们可以举例子说明。以三星K9K1G08U0M和K9K4G08U0M为例,前者为1Gb,512字节页容量,随机读(稳定)时间12μs,写时间为200μs;后者为4Gb,2KB页容量,随机读(稳定)时间25μs,写时间为300μs。假设它们工作在20MHz。 读取性能:NAND型闪存的读取步骤分为:发送命令和寻址信息→将数据传向页面寄存器(随机读稳定时间)→数据传出(每周期8bit,需要传送512+16或2K+64次)。 K9K1G08U0M读一个页需要:5个命令、寻址周期×50ns+12μs+(512+16)×50ns=38.7μs;K9K1G08U0M实际读传输率:512字节÷38.7μs=13.2MB/s;K9K4G08U0M读一个页需要:6个命令、寻址周期×50ns+25μs+(2K+64)×50ns=131.1μs;K9K4G08U0M实际读传输率:2KB字节÷131.1μs=15.6MB/s。因此,采用2KB页容量比512字节也容量约提高读性能20%。 写入性能:NAND型闪存的写步骤分为:发送寻址信息→将数据传向页面寄存器→发送命令信息→数据从寄存器写入页面。其中命令周期也是一个,我们下面将其和寻址周期合并,但这两个部分并非连续的。 K9K1G08U0M写一个页需要:5个命令、寻址周期×50ns+(512+16)×50ns+200μs=226.7μs。K9K1G08U0M实际写传输率:512字节÷226.7μs=2.2MB/s。K9K4G08U0M写一个页需要:6个命令、寻址周期×50ns+(2K+64)×50ns+300μs=405.9μs。K9K4G08U0M实际写传输率:2112字节/405.9μs=5MB/s。因此,采用2KB页容量比512字节页容量提高写性能两倍以上。 3.块容量 块是擦除操作的基本单位,由于每个块的擦除时间几乎相同(擦除操作一般需要2ms,而之前若干周期的命令和地址信息占用的时间可以忽略不计),块的容量将直接决定擦除性能。大容量NAND型闪存的页容量提高,而每个块的页数量也有所提高,一般4Gb芯片的块容量为2KB×64个页=128KB,1Gb芯片的为512字节×32个页=16KB。可以看出,在相同时间之内,前者的擦速度为后者8倍! 4.I/O位宽 以往NAND型闪存的数据线一般为8条,不过从256Mb产品开始,就有16条数据线的产品出现了。但由于控制器等方面的原因,x16芯片实际应用的相对比较少,但将来数量上还是会呈上升趋势的。虽然x16的芯片在传送数据和地址信息时仍采用8位一组,占用的周期也不变,但传送数据时就以16位为一组,带宽增加一倍。K9K4G16U0M就是典型的64M×16芯片,它每页仍为2KB,但结构为(1K+32)×16bit。 模仿上面的计算,我们得到如下。K9K4G16U0M读一个页需要:6个命令、寻址周期×50ns+25μs+(1K+32)×50ns=78.1μs。K9K4G16U0M实际读传输率:2KB字节÷78.1μs=26.2MB/s。K9K4G16U0M写一个页需要:6个命令、寻址周期×50ns+(1K+32)×50ns+300μs=353.1μs。K9K4G16U0M实际写传输率:2KB字节÷353.1μs=5.8MB/s 可以看到,相同容量的芯片,将数据线增加到16条后,读性能提高近70%,写性能也提高16%。 5.频率 工作频率的影响很容易理解。NAND型闪存的工作频率在20~33MHz,频率越高性能越好。前面以K9K4G08U0M为例时,我们假设频率为20MHz,如果我们将频率提高一倍,达到40MHz,则 K9K4G08U0M读一个页需要:6个命令、寻址周期×25ns+25μs+(2K+64)×25ns=78μs。K9K4G08U0M实际读传输率:2KB字节÷78μs=26.3MB/s。可以看到,如果K9K4G08U0M的工作频率从20MHz提高到40MHz,读性能可以提高近70%!当然,上面的例子只是为了方便计算而已。在三星实际的产品线中,可工作在较高频率下的应是K9XXG08UXM,而不是K9XXG08U0M,前者的频率目前可达33MHz。 6.制造工艺 制造工艺可以影响晶体管的密度,也对一些操作的时间有影响。譬如前面提到的写稳定和读稳定时间,它们在我们的计算当中占去了时间的重要部分,尤其是写入时。如果能够降低这些时间,就可以进一步提高性能。90nm的制造工艺能够改进性能吗?答案恐怕是否!目前的实际情况是,随着存储密度的提高,需要的读、写稳定时间是呈现上升趋势的。前面的计算所举的例子中就体现了这种趋势,否则4Gb芯片的性能提升更加明显。 综合来看,大容量的NAND型闪存芯片虽然寻址、操作时间会略长,但随着页容量的提高,有效传输率还是会大一些,大容量的芯片符合市场对容量、成本和性能的需求趋势。而增加数据线和提高频率,则是提高性能的最有效途径,但由于命令、地址信息占用操作周期,以及一些固定操作时间(如信号稳定时间等)等工艺、物理因素的影响,它们不会带来同比的性能提升。 1Page=(2K+64)Bytes;1Block=(2K+64)B×64Pages=(128K+4K)Bytes;1Device=(2K+64)B×64Pages×4096Blocks=4224Mbits 其中:A0~11对页内进行寻址,可以被理解为“列地址”。 A12~29对页进行寻址,可以被理解为“行地址”。为了方便,“列地址”和“行地址”分为两组传输,而不是将它们直接组合起来一个大组。因此每组在最后一个周期会有若干数据线无信息传输。没有利用的数据线保持低电平。NAND型闪存所谓的“行地址”和“列地址”不是我们在DRAM、SRAM中所熟悉的定义,只是一种相对方便的表达方式而已。为了便于理解,我们可以将上面三维的NAND型闪存芯片架构图在垂直方向做一个剖面,在这个剖面中套用二维的“行”、“列”概念就比较直观了。
文章TAG:闪存性能怎么怎么样闪存性能怎么样UFS和eMMC究竟有什么区别

最近更新

相关文章